diy

DIY genetic engineering

From Marcus Wohlsen’s “Amateurs are trying genetic engineering at home” (AP: 25 December 2008):

Now, tinkerers are working at home with the basic building blocks of life itself.

Using homemade lab equipment and the wealth of scientific knowledge available online, these hobbyists are trying to create new life forms through genetic engineering — a field long dominated by Ph.D.s toiling in university and corporate laboratories.

In her San Francisco dining room lab, for example, 31-year-old computer programmer Meredith L. Patterson is trying to develop genetically altered yogurt bacteria that will glow green to signal the presence of melamine, the chemical that turned Chinese-made baby formula and pet food deadly.

Many of these amateurs may have studied biology in college but have no advanced degrees and are not earning a living in the biotechnology field. Some proudly call themselves “biohackers” — innovators who push technological boundaries and put the spread of knowledge before profits.

In Cambridge, Mass., a group called DIYbio is setting up a community lab where the public could use chemicals and lab equipment, including a used freezer, scored for free off Craigslist, that drops to 80 degrees below zero, the temperature needed to keep many kinds of bacteria alive.

Patterson, the computer programmer, wants to insert the gene for fluorescence into yogurt bacteria, applying techniques developed in the 1970s.

She learned about genetic engineering by reading scientific papers and getting tips from online forums. She ordered jellyfish DNA for a green fluorescent protein from a biological supply company for less than $100. And she built her own lab equipment, including a gel electrophoresis chamber, or DNA analyzer, which she constructed for less than $25, versus more than $200 for a low-end off-the-shelf model.

DIY genetic engineering Read More »

DIY worm kits

From Jose Nazario’s Anatomy of a worm (Computerworld: 15 September 2004):

Now imagine a world where worm attacks frequently occur because hackers and rogue developers have access to “worm kits” or development tools that provide the basic building blocks for rapid worm development.

Historically, worms were basic clones of one another that didn’t change after their original development. Simple mechanisms were used to propagate them, such as mass-mailing worms using a single subject line.

Today’s worms are more sophisticated. They have the ability to mutate after development based on knowledge of how to thwart new security processes. For instance, an early worm, Code Red, attacked only Internet Information Server servers. The Nimda worm, which came later, expanded to include at least three additional attack methodologies: mail-based attacks, file-sharing-based attacks, and attacks against the Internet Explorer Web browser.

The potential for this worm-a-day nightmare comes from several factors: the dozens of vulnerabilities that are ready to be exploited, the availability of worm source code, recycled exploits and the ease of editing existing worms.

DIY worm kits Read More »